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Introduction 
Most of the time, opticians work with their hands and eyes.  You may have chosen this profession 
because you like it that way, and prefer it to working with a calculator or computer.  
Nevertheless, optical components are specified in terms of geometry and units.  They behave 
according to physical laws.  You’ll occasionally need to make calculations.   
 
In many shops the formulas for these calculations are on scraps of paper taped to the walls.  Are 
they correct?  Under what conditions do they work?  Who said so?  When?  And what happens 
when the walls are painted? 
 
In this module we’ll present some of the most relevant formulas, and how and when to use them.  
Some of these will be familiar to most people in the shop but some will be new because they’re 
either difficult to find or haven’t been published elsewhere.  
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Figure 1: Sagitta 

All spheres 
 Eq. 1  h = (y2/R) / [1 + √(1 - y2/R2)] 
 
Where h = sagitta, 
R = radius of curvature 
And y = ½ of the span 
 
This is accurate for all spheres.1   

When using a spherometer with ball feet 
 Eq. 2  h = (y2/R) / [1 + √(1 - y2/ R 2)] 
 
Where  
h = sagitta, 
R = R-B 



R = radius of curvature:  Positive for concave radii, negative for convex radii 
B = radius (half the diameter) of the contact ball  
y = half-span of the ball circle at the zenith of the balls.  (When the balls touch a plane surface, 
their points of contact lie on a circle whose diameter is 2y.) 

 
Figure 2: Sagitta with ball-foot spherometer 

Handy approximation for R>>φ 
 Eq. 3  h ≅ φ2/8R 
 Eq. 4  R ≅ φ2/8h 
 
Where h = sagitta 
φ = diameter of part (or full span of segment being measured) 
R = radius of curvature 
 
This approximation is very useful when R is substantially larger than φ, because it’s so simple 
you don’t even need a calculator.  When R = φ, it’s only off 7%.  When R = 5φ, it’s off by 0.25%, 
and it gets much better fast. 

Slope at edge of lens or block 
 Eq. 5  θ = cos-1(|h/R| - 1) 
 Eq. 6  θ = sin-1(y/R) 
 
Where θ = angle between surface normals at center and edge of lens or block 
h = sagitta 
y = half-diameter of lens or block 
R = radius of curvature 
|  | means absolute value:  Use a plus sign for what’s between the bars 

Test plate fit 
Eq. 7   ΔR = 4NλR2/φ2 
Eq. 8  N = φ2ΔR/4R2λ 

 
Where ΔR = difference in radius between part and test plate 
N = number of fringes of power showing 
φ = diameter of interfering area 
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And R = nominal radius of curvature. 
 
Use the same units throughout!  If your radius is expressed in millimeters, then use millimeters 
for the diameter and the wavelength also.  HeNe red = 0.0006328 mm = 6.328 X 10-4 mm. 

Bevels 

Cup wheel radius for small bevel on circular part 
The most common way to put a bevel on a circular part is to grind the part’s OD against a cup 
wheel.  Bevels produced in this way aren’t conical as drawn on the print, but replicate the 
spherical shape of the cup.  This is close enough for small bevels.  For larger bevels see the next 
section.  
 Eq. 9  R = φ/(2cosθ) 
 
Where φ = part diameter 
R = radius or curvature of cup wheel 
And θ = the angle between the bevel and the barrel edge, at the barrel edge. 
 
For 45° bevels, 
 Eq. 10   R = φ/√2 

Cup wheel radius for large 45° bevel on circular part 
 Eq. 11  R = √(φ/2 - φb + b2) 
 
Where b = the leg length of the bevel measured from the edge of the part directly toward the 
center of the part.  This will produce the desired angle at the midline of the bevel.2 

Cup wheel radius for 45° bevel on the cut chord of a D-shape spherical part 
Sometimes part of a circular lens is cut off to form a D-shape.  If you want to put an accurate, 
even, 45° bevel on the cut section, use a cup with this radius and hold the part against the cup so 
that it fits.  (It’s easier than it sounds.)  This can be done for convex or concave radii.3 
 Eq. 12  RC = √[2(RL

2 – y2)] 
 
Where RC = radius of curvature of cup wheel 
RL = radius of curvature of lens on side being beveled 
And y = lateral offset of cut from barrel axis. 

Tilt of concave radius part rim-mounted against a decentered bevel 
When a bevel is wider on one side than the other, the bevel rim is lower on the wider side.  When 
blocking such a part against a plate, or rim-mounting it in a lens barrel, this situation causes the 
lens to tilt.  Surprisingly there’s a very simple relationship that doesn’t depend on the overall 
width of the bevel or its angle: 
 Eq. 13  α = (b2 – b1)/2R 
 
Where b2 = maximum width of the bevel measured laterally from part edge towards part center 
b1 = minimum width of the bevel measured laterally from part edge towards part center 
And R = radius of curvature of the surface with the bevel. 
α is in units of radians.  To convert to degrees, take the sin-1 of α. 
 



This result is helpful when deciding whether rim mounts or wax blocking will be sufficient to 
meet tilt specifications.4 

Blocking 

Capacity of a plano block for circular parts 
Start by laying parts across a diameter of the block, with proper spacing between.  Count the 
number of parts across the diameter. 
 Eq. 14   NB = (ND)2/1.3 
 
Where NB = number of parts that will fit on the block, properly spaced 
And ND = number of parts that fit across a diameter of the block with same spacing between.5 

Capacity of a radius block for circular parts 
 Eq. 15  NB ≅ 5.2 R2(1-cosα)/φ2 
 
Where NB = approximate number of parts that will fit on the block, properly spaced 
R = radius of curvature of part if concave; or of blocking tool if convex 
φ = diameter of part 
And α = slope angle of block at outer edge, recommended not to exceed 60° unless unavoidable. 
 
Of course, you won’t get 5.2 parts in any block.  Choose the closest number.  The capacity of 
blocks with small numbers of parts may not be exact; adjust angles and spacing as necessary. 

Slope angle at edge of spherical blocks containing 3 or 4 pieces 
 Eq. 16  α3 = sin-1[(φ+a)/(R*√3)] + sin-1(φ/2R) 
 Eq. 17  α4 = sin-1[(φ+a)/(R*√2)] + sin-1(φ/2R) 
 
Where α3 = slope angle at outer edge of 3-lens block 
α4 = slope angle at outer edge of 4-lens block 
φ = the diameter of the parts 
a = the separation between lenses 
R = radius of parts 

Wedge in spherical parts off-center of a block due to grinding removal6 
 Eq. 18  α = sin-1(Δh*DC/2R2) 
 
Where α = angle shift in a given row of parts 
Δh = vertical height removal 
DC = distance from center to center of parts in row under consideration, across diameter 
R = part radius of curvature 

Change of thickness required to adjust for wedge in spot tool 
Sometimes a spot tool produces wedged parts.  What is the ideal thickness to minimize wedge in 
a given tool?  Rearranging equation 18, we get: 
 
 Eq. 19  Δh = 2R2α/DC  
 Eq. 20  Δh = 2R2W/φDC 



 
Where W = the edge thickness variation in parts within the row under consideration 
φ = part diameter. 

Fringe scaling factors 
Here’s where we separate the opticians from the poseurs.  This subject is broadly – almost 
universally – misunderstood.  The first thing to understand is this: 
 

One fringe represents one wave of optical path difference between the 
interfering wavefronts, at the plane of interference.  Always. 

It’s true.  Always.  So why do people say “a fringe is a half wave”?  They’re not even wrong!  
They’re just not completing the thought.  It should be this:   
 

A fringe, as seen in a test plate or Fizeau interferometer or other system in which 
the light goes out and returns along the same path, represents one wave of optical 
path difference at the plane of interference.  One half of that optical path 
difference was incurred on the way out, and one half on the way back.  So that 
fringe is equivalent to λ/2 of surface height variation in reflection, or λ/2 of 
transmitted wavefront deviation per pass. 

But who has time to say that? 
 
There are other situations in which one fringe – which always equals one wave of accumulated 
optical path difference – is caused by different amounts of surface distortion.7 
 
In the following situations, H is the height of the perturbation.  Put H in terms of λ, and the 
formulas will give results in terms of λ = fringes.  The fringe scaling factor in the interferometer 
is the ratio of the specified parameter – either H or TWF or RWF, to the number of waves of 
accumulated optical path difference (OPD) or fringes.  For example, when flatness is specified, 
the tolerance is on the height deviation.  When measured in double-pass in first surface reflection, 
the ratio is OPD = 2H1 (see Equation 21 below.)  Therefore the fringe scaling factor is 0.5. 



Normal-incidence optical path lengths 

 
 
Figure 3: Various light paths to consider in normal-incidence optical path difference calculation 

Eq. 21   (1 vs. reference plane)   OPD first surface reflection = 2H1 
Eq. 22   (2 vs. 4)  OPD 2nd surface reflection = 2(n - 1)H1 + 2nH2 
Eq. 23  (4 vs. 5) Internal fringes = 2n(H1 + H2) 
Eq. 24  (3 vs. 6) OPD double pass transmission = 2(n-1)H1 
Eq. 25  (4 vs. 6) OPD double-pass transmission = 2(n - 1)(H1 + H2) 

 
Note:  These formulas assume that the exterior index of refraction = 1.  If that is 
not true – for example, if the part is immersed in water or bonded with optical 
cement – then use the versions below: 

Eq. 26   (1 vs. reference plane)   OPD first surface reflection = 2n1H1 
Eq. 27   (2 vs. 4)  OPD 2nd surface reflection = 2(n2 – n1)H1 + 2n2H2 
Eq. 28  (4 vs. 5) Internal fringes = 2n2(H1 + H2) 
Eq. 29  (3 vs. 6) OPD double pass trans. = 2[(n2 - n1)H1] 
Eq. 30  (4 vs. 6) OPD double-pass trans. = 2[(n2 - n1)H1 + (n3 – n2)H2] 

  
Where n1 = index to the left of the enclosed object 
n2 = index within the enclosed object 
and n3 = index to the right of the enclosed object. 

Ratio of internal reflection OPD to double-pass transmission OPD 
Here’s an interesting and handy result I discovered.  You can determine the transmitted wavefront 
from viewing internal reflection fringes by using this simple ratio: 
 
 Eq. 31  OPDdouble-pass transmission  / OPDinternal = (n-1)/n 
 
Or, when immersed in another index, 
 

Eq. 32  OPDdouble-pass transmission  / OPDinternal = (ninternal – nexternal) / ninternal 



Transmitted wavefront distortion due to index inhomogeneity 
Why waste all your time making perfect surfaces when the glass is “lumpy” inside?  What 
homogeneity grade does the glass need to be to achieve a given transmitted wavefront? 
 
 Eq, 33  OPDmaterial per pass = t*δn/λ 
 
Where t = thickness 
δn = index inhomogeneity 
λ = wavelength  

Oblique-incidence optical path lengths 

 
 
Figure 4: Oblique light paths in reflection and transmission 
 

Eq. 34 Oblique reflected wavefront per pass, OPD = 2H cosα 
Eq. 35 Oblique transmitted wavefront per pass8, OPD = H[√(n2 – sin2α) - cosα] 
 

Where α = external angle of incidence.   
 

Note:  These formulas assume that the exterior index of refraction = 1.  If that is 
not true – for example, if the part is immersed in water or bonded with optical 
cement – then replace 1 in the equations with n(external) and n with n(internal).  

 
Note:  The defect is drawn on the entry face, but Equation 29 works the same in 
either direction.  If the part is not parallel, use the external angle of incidence 
appropriate for each surface.   

Mechanical distortions of optical components 

Distortion due to thermal gradient 
When one side of a window or other flat parallel component is at a different temperature from the 
other side, the component will bend due to thermal expansion9.  If the component is 
unconstrained,  
 
 Eq. 36  h = y2αΔT/2t 
 



Where h = sagittal height of distortion 
y = half-diameter of part, or half-diameter of aperture of interest 
α = coefficient of thermal expansion 
ΔT = difference of temperatures 
t = thickness of part 
 
Equation 36 can be rearranged as 
 
 Eq. 37  h = (y/2t)*yαΔT 
 
This form shows more directly how the bending of the part is affected by its aspect ratio.  
The disc is bent into a spherical section whose radius is 
 
 Eq. 38  R = t/αΔT 
 
Where R = resultant radius of curvature of distorted component. 

Distortion due to pressure or self-weight 
Windows can be called upon to resist pressure; common examples being a porthole, sight glass, 
airplane window, or laser end window.   The amount that the window bends depends upon the 
way it’s mounted, the pressure differential, the material properties, and the window’s dimensions.  
The window may be “clamped,” meaning that it is rigidly embedded around its diameter (for 
example, epoxied or fritted around its edge,) or it may be “simply supported,” meaning that it is 
supported by a ring around its edge (for example, an O-ring.)  These two cases produce very 
different amounts of bending.   
 
The equations below are substantial simplifications of the full expressions10; nevertheless they 
give nearly identical results11. 
 

Eq. 39  hss ≅ 5/4 Py4/(Et3) 
 Eq. 40  hc ≅0.176 Py4/(Et3) 
 
Where hss = sag height of simply supported window 
Hc = sag height of clamped window 
P = pressure 
y = half-diameter of circular window  
E = Young’s modulus 
t = thickness 
 
Make sure to use the same units for Young’s modulus as for pressure.  
 
The force of pressure acts the same as the force due to the component’s own weight if it is 
mounted with its face horizontal.  For self-weight sag, replace P with ρt, where ρ is the specific 
gravity of the window’s material. 

Pressure-bearing window thickness and “safety factors” 
Put a window under too much pressure and it will break.  Thicker windows resist more pressure.  
The minimum thickness to resist a given pressure is given below: 
 
 Eq. 41  tc/φ = 0.866√(SF*P/4Y) 



 Eq. 42  tss/φ = 1.06√(*SF*P/4Y) 
 
Where tss = thickness, simply-supported window 
tc = thickness, clamped window 
φ = diameter of unsupported region 
SF = “safety factor” 
P = pressure 
Y = window material yield strength. 
 
Note that yield strength is not the same as Young’s modulus.  It can be orders of magnitude 
lower.  
 
The term “safety factor,” although in common use, is misleading because it doesn’t guarantee a 
particular margin of safety.  More accurately, what is called the safety factor is a fudge factor that 
we hope is large enough to make up for what we don’t know.   The above analysis is theoretical 
and based on perfect situations.  Scratches, cracks, material imperfections, imperfect support, 
thermal stresses, and fatigue all reduce the strength of the window.  “Safety factor” should never 
be set lower than 4; and higher if failure would result in injury, mission failure, or great expense. 

Beam deviations by optical components 

Beam displacement by inclined plate 
 

 
Figure 5: Beam displacement by inclined plate 
 
 Eq. 43  x = t sinθ[1 – (cosθ)/(√(n2 – sin2θ)] 
 
For θ = θB = Brewster’s angle, this reduces to 
 
 Eq. 44  x = t[sinθB – (cosθB)/n] 



Displacement of secondary reflection from primary transmission, inclined 
plate 

S

t

 
Figure 6: Beam separations after inclined plate 
 
 Eq. 45  S = t sin(2θ)/[√(n2 – sin2θ)] 

Lenses 

Lensmaker’s formula 

Thin lens versions 
 Eq. 46  1/f = (n-1)(1/R1 – 1/R2) 
 Eq. 47  1/f = (n-1)/R 
 
Where f = focal length 
R1 = radius of 1st surface 
R2 = radius of 2nd surface 
R = radius of curved surface if other surface is plano.  (1/∞ = 0) 
Radii are positive if their centers of curvature come after the surface. 
 
To find the focal length of a plano-convex or plano-concave lens, 
 
 Eq. 48  R = (n-1)f 

Thick lens version 
 Eq. 49  1/f = (n-1)(1/R1 – 1/R2) + (n-1)2/n * tc/R1R2 
 
Where tc = center thickness.  Thickness does not factor into the focal length of plano-convex or 
plano-concave lenses. 



Centering 

 
Figure 7: Decentered lens 

 
f = focal length, Φ = diameter 
To convert→  
To ↓ 

Wedge angle W ETV Decentration Δ Beam Deviation 
Angle δ 

Wedge Angle 
W 

 W =arctan(ETV/Φ) W = arctan(Δ/R) W = δ/(n-1) 

Edge Thickness 
Variation ETV 

ETV = 
Φtan(W) 

 ETV =  
Φ*Δ/R 

ETV = 
Φtan(δ)/(n-1) 

Decentration Δ Δ = tan(W)*R Δ = R*ETV/Φ   Δ=f*tan(δ) 
Or 

Δ = tan(δ)/(n-1) 
Beam Deviation 
Angle δ 

δ = (n-1)W δ = (n-1)* 
arctan(ETV/Φ) 

δ = arctan(Δ/f)  
Or 

δ = (n-1)Δ/R 

 

Table 1: Plano-spherical lenses 
 



 
f = focal length, Φ = diameter, L = distance between centers of curvature (R1 – tc - R2) 
To convert→  
To ↓ 

Wedge angle W ETV Decentration Δ Beam Deviation 
Angle δ 

Wedge Angle 
W 

 W = 
atan(ETV/Φ) 

W = atan{Δ/[(n-
1)*f] 
Or 

W = atan{Δ* 
[R2-R1+(n-1)*tc/n] 

/R1*R2} 

W = δ/(n-1) 

Edge Thickness 
Variation ETV 

ETV = 
Φtan(W) 

 ETV = ΔΦ/[(n-1)f] ETV = 
Φtan(δ)/(n-1) 

Image 
Decentration Δ 

Δ = (n-1)tan(W)* 
f 

or 
Δ = 

R1*R2*tan(W) 
/[R2-R1+ 
(n-1)*tc/n] 

Δ = (n-1)* 
ETV*f/Φ 

 Δ=f*tan(δ) 

Lateral 
displacement of 
lens when 
chucked on R2 
to restore 
centration 

ΔE = 
R1R2*tan(W)/L 

ΔE = R1R2* 
ETV/(ΦL) 

ΔE = ΔR1R2 
/[f(n-1)L] 

ΔE = R1R2*tan(δ) 
/[(n-1)L] 

Lateral 
displacement of 
R1’s center of 
curvature when 
chucked on R2 

ΔR1 = R1tan(W) ΔR1 = ETV*R1/Φ ΔR1 = R1*Δ/[(n-1)f] ΔR1 = R1tan(δ) 
/(n-1) 

Beam Deviation 
Angle δ 

δ = (n-1)W δ = (n-1)* 
atan(ETV/Φ) 

δ = atan(Δ/f)  

Table 2: Bi-curve lenses 

Conversions 

Temperature 
 Eq. 50  °C = (5/9)*(°F-32)  
 Eq. 51  °F = °C*9/5 + 32 
 Eq. 52  K = °C + 273.15 
 
Where °C = temperature expressed in degrees Celsius (centigrade) 
°F = temperature expressed in degrees Fahrenheit 
K = absolute thermodynamic temperature in Kelvins12 

Size of degrees 
Difference in temperature of 1.8 °F = difference of 1 °C = difference of 1 K 
 
A few important temperatures:   
♦ - 40 °C = - 40 °F.   
♦ Boiling point of water at sea level = 212 °F = 100 °C.   



♦ Freezing point of water at sea level = 32 °F = 0 °C.   
♦ Absolute zero (as cold as possible) = 0 K = -273.15 °C = -459.67 °F. 

Length 
1 inch = 25.4 mm 

Mass 
1 oz ≅ 28.349 g 
1 lb ≅ 453.592 g 
1 kg ≅ 2.2046 lb. 

Angle 
1 circle = 360° 
1 circle = 2 π radians ≅ 6.2832 radians 
1 radian ≅ 57.2958° 
1 mrad ≅ 3.4377 minutes 
1 μrad ≅ 0.2063 seconds 
1 second ≅ 4.848 μrad 
Brewster’s angle = tan-1(n) 

Geometry 

Area 

Square 
  

Eq. 53  A = s2 
 
Where s = length of a side 

Rectangle 
  
 Eq. 54  A = L * W 
 
Where L = length and W = width 

Parallelogram 
 
 Eq. 55  A = B * H 
 
Where B = base and H = height perpendicular to base 

Trapezoid 
 
 Eq. 56  A = ½ (B1 + B2) * H 
 
Where B1 and B2 are the lengths of the two parallel edges, and H is the distance between the two 
parallel edges. 



Triangle 
 
 Eq. 57  A = ½ B * H 
 
Where B = base and H = height perpendicular to base.  Any side can be taken as B and the 
distance from the opposite vertex along a perpendicular to B is then called H. 

Circle 
 
 Eq. 58  A = π r2 
 
Where r = half the diameter of the circle. 

Volume 

Cube 
 
 Eq. 59  V = s3 
 
Where s = length of any side. 

Brick13 
 
 Eq. 60  V = L * W * H 
 
Where L = length, W = width, and H = height. 

Cylinder 
 
 Eq. 61  V = π r2 h 
 
Where r = half the diameter of the cylinder, and H is the length measured along the central axis.   
 
Note:  The ends don’t need to be perpendicular to the axis, or even parallel to each other. 

Sphere 
 
 Eq. 62  V = 4/3 π r3 

Summary 
Use this module as a reference in the shop.  Don’t trust little slips of paper that you see taped to 
the walls.  Check back for updated versions. 
                                                      
1 There’s another common form of this equation that looks a bit simpler, h = R - √(R2 – y2).  Beware of this 
version:  When entering negative radii it will give a very wrong answer, and rounding errors in calculators 
reduce its accuracy for long radii.  The form given in the main text can take negative radii and gives more 
accurate answers for long radii. 
2 I haven’t seen this published.  My derivation, April 1987. 
3 I haven’t seen this published.  My derivation, February 1984. 



                                                                                                                                                              
4 I haven’t seen this published.  My derivation, June 1973. 
5 After much trigonometry, I discovered that this simple formula is correct within 2% in all cases, 
regardless whether the block starts with 1, 3, or 4 in the center. 
6 I haven’t seen this published.  Thanks to Teddi von der Ahe for this nice derivation, April 1990. 
7 “Whenever Two Beams Interfere, One Fringe Equals One Wave (in the Plane of Interference) – Always,” 
Ray Williamson, SPIE Proceedings vol. 1527, 1991. 
8 Ibid., and private communication, David Kohler. 
9 All equations due to Norm Brown, Optical Fabrication and Testing Workshop, 3/15/1975. 
10 Sparks and Cottis, Pressure-induced optical distortion in laser windows, J. Appl. Phys, v. 44 #2, February 
1973; and Roark and Young, Formulas for Stress and Strain,  McGraw-Hill 
11 Poisson’s ratio appears in several terms of these equations.  Poisson’s ratio must lie between 0 and 0.5, 
and almost all materials are between 0.09 and 0.4 with the great majority around 0.25.  I’ve inserted 0.25 
into the messier equations to achieve these approximations.  The differences turn out to be small. 
For the hardy, here’s the full expression for a simply supported and clamped window: 
hss = 12Py4[(5 + ν)*(1 - ν2)/(1 + ν)]/(64Et3) 
hc = 12Py4(1-ν2)/(64Et3) 
Where ν = Poisson’s ratio. 
See for yourself how little difference it makes. 
12 Note that Kelvin is a basic unit, like grams and volts.  The Kelvin scale starts at absolute zero, and the 
number of Kelvins above absolute zero is the thermodynamic temperature:  1000 K is twice as hot as 500 
K.  By contrast, the Celsius and Fahrenheit scales start at arbitrary points and so they’re more like 
addresses:  1000 Elm Street is not “twice” 500 Elm Street in any respect, and 2 °C is definitely not twice as 
hot as 1 °C, either in absolute terms or our own perception.  Therefore the Celsius and Fahrenheit scales are 
expressed in degrees and Kelvin is not.   
The difference in temperature expressed by a difference of 1°C is equal to a difference of 1 K, and is also 
equal to a difference in temperature of 1.8 °F. 
13 OK, officially it’s called a parallelepiped. 
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